kcl →
reduce
Take a starting value. Then, for each element of an array, calculate the next value,
using the previous value and the element.
reduce(array: [KclValue], start: KclValue, reduce_fn: FunctionParam) -> KclValue
Arguments
Name | Type | Description | Required |
---|---|---|---|
array | [KclValue] | Yes | |
start | KclValue | Any KCL value. | Yes |
reduce_fn | FunctionParam | Yes |
Returns
KclValue
- Any KCL value.
Examples
// This function adds two numbers.
fn add(a, b) {
return a + b
}
// This function adds an array of numbers.
// It uses the `reduce` function, to call the `add` function on every
// element of the `arr` parameter. The starting value is 0.
fn sum(arr) {
return reduce(arr, 0, add)
}
/* The above is basically like this pseudo-code:
fn sum(arr):
sumSoFar = 0
for i in arr:
sumSoFar = add(sumSoFar, i)
return sumSoFar */
// We use `assertEqual` to check that our `sum` function gives the
// expected result. It's good to check your work!
assertEqual(sum([1, 2, 3]), 6, 0.00001, "1 + 2 + 3 summed is 6")
// This example works just like the previous example above, but it uses
// an anonymous `add` function as its parameter, instead of declaring a
// named function outside.
arr = [1, 2, 3]
sum = reduce(arr, 0, fn(i, result_so_far) {
return i + result_so_far
})
// We use `assertEqual` to check that our `sum` function gives the
// expected result. It's good to check your work!
assertEqual(sum, 6, 0.00001, "1 + 2 + 3 summed is 6")
// Declare a function that sketches a decagon.
fn decagon(radius) {
// Each side of the decagon is turned this many degrees from the previous angle.
stepAngle = 1 / 10 * tau()
// Start the decagon sketch at this point.
startOfDecagonSketch = startSketchOn('XY')
|> startProfileAt([cos(0) * radius, sin(0) * radius], %)
// Use a `reduce` to draw the remaining decagon sides.
// For each number in the array 1..10, run the given function,
// which takes a partially-sketched decagon and adds one more edge to it.
fullDecagon = reduce([1..10], startOfDecagonSketch, fn(i, partialDecagon) {
// Draw one edge of the decagon.
x = cos(stepAngle * i) * radius
y = sin(stepAngle * i) * radius
return lineTo([x, y], partialDecagon)
})
return fullDecagon
}
/* The `decagon` above is basically like this pseudo-code:
fn decagon(radius):
stepAngle = (1/10) * tau()
plane = startSketchOn('XY')
startOfDecagonSketch = startProfileAt([(cos(0)*radius), (sin(0) * radius)], plane)
// Here's the reduce part.
partialDecagon = startOfDecagonSketch
for i in [1..10]:
x = cos(stepAngle * i) * radius
y = sin(stepAngle * i) * radius
partialDecagon = lineTo([x, y], partialDecagon)
fullDecagon = partialDecagon // it's now full
return fullDecagon */
// Use the `decagon` function declared above, to sketch a decagon with radius 5.
decagon(5.0)
|> close(%)